IEEE802.15.4 無線 I/O コントローラー

XB-40、XB-40RP

ユーザーズマニュアル

株式会社 インターネット

Copyright©2012~ Internet Co., Ltd. All Rights Reserved

ユーザーズマニュアル履歴

Rev.	改訂日付	内容
1.0	2012/ 9/5	初版リリース
1.01	2012/10/22	DIPSW 初期設定状態変更、64bitOS コンパイルの注意
1.10	2013/5/26	XB-40RP 追加
1.20	2013/ 9/14	リトライ回数、定期通信追加 電界強度 LED の発光時間 4 秒→1 秒
1.21	2014/1/17	電流消費量訂正
1.22	2015/5/7	リモートの電源 OFF 検出

☆本マニュアルの最新版は当社ホームページからダウンロードいただけます。

1.	はじめに5
2.	概要
	2.1 機能と特長 10
	2.2 ハードウェア仕様 11
3.	ハードウェア
	3.1 ブロック図 12
	3.2 外観・接続図 13
	3.3 各部名称と機能 16
	3.4 コネクター・ピン配置 17
	3.5 電気的特性17
	3.6 電源について19
	3.7 入出力回路21

4. XB-40 の使い方

4.1	DIP スイッチの設定	23
4.2	電源を入れる	24
4.3	通信のタイミング	25
4.4	エラー検出機能とリトライ	25
4.5	電源落ちからの復旧など	26
4.6	電波の周波数について	27

4.7 電波の強度と混信などについて......28

5. ソフトウェア

5.1	ドライバーのインストール	29
5.2	コマンド一覧	41
5.3	サンプルプログラムの実行	48
5.4	サンプルプログラム解説	52
5.5	mpusbapi.dll の関数一覧	57

6. その他

6.1	オプション製品	60
6.2	特注仕様	61

1.はじめに

このたびはサイバーメロン・マイコンボードシリーズ XB-40、XB-40RP を お買いあげいただきまして、誠に有り難うございます。

本マニュアルは XB-40 および RPSMA アンテナタイプの XB-40RP 共通に なっております。

(アンテナ部以外は同等のため XB-40RP もマニュアル内表記は XB-40 に なっています)

ご使用に当たりましては本書を良くお読みいただき正しい取り扱い方法を ご理解の上ご使用いただきますようお願い致します。

注意事項

- 1. 本製品の仕様、および本書の内容に関して事前の予告なく変更する ことがありますのでご了承ください。
- 本製品または付属プログラムの使用によるお客様の損害、および第三者からのいかなる請求につきましても当社はその責任を負いかねますので予めご 了承ください。
- 本製品に付属のソフトウェア・ライブラリおよびサンプルプログラムは その動作を完全保証するものではありません。製品に組み込んで使用される 場合にはユーザ様にて十分なテストと検証をお願いします。 ソフトウェアの最新版はユーザー登録後、当社ホームページからダウン ロードしていただけます。
- 4. 本製品および本書に関し、営利目的での複製、引用、配布は禁止されています。

ご使用に当たって

- 1. 梱包品の内容をまずご確認ください。(8ページ参照)
- 2. ご使用になる前に下記の安全についての注意を必ずお読みください。
- 3. 通電する前に、本製品の使い方を十分ご確認いただき、正しい接続と 設定をご確認ください。

- 本製品を医療機器など人命に関わる装置や高度な信頼性・安全性を要求され る装置へ搭載することはご遠慮ください。
 その他の装置に搭載する場合でもユーザー様にて十分な信頼性試験・評価を おこなった上で搭載してください。
 また非常停止や緊急時の制御は外部の独立した回路にておこなって ください。
- 2. 本製品の改造使用は発熱、火災などの原因となり危険ですのでご遠慮ください。
- 3. 本製品のマニュアル記載環境以外でのご使用は故障、動作不良などの原因に なりますのでご遠慮ください。
- 本製品は導電部分が露出しておりますので、金属パーツなどショートの可能性のあるもの、液体のこぼれる可能性のある場所の近くでの使用はお控えください。

また装置に組み込む場合も絶縁に関しては十分な注意を払ってください。

- 電源は必ず本製品専用(指定)のものをお使いください。
 電圧、極性、プラグ形状など異なるものをご使用になりますと故障の原因となるばかりでなく、火災など重大事故に繋がる危険性があります。
- 6. 本製品に触れる前には体から静電気を除去してください。
- 7. 本製品には落下など強い衝撃を与えないでください。

■ 以下の環境でのご使用はお控えください。

- ・強い電磁界や静電気などのある環境
- ・直射日光の当たる場所、高温になる場所
- ・氷結や結露のある場所、湿度の異常に高い場所
- ・薬品や油、塩分などのかかる場所
- 可燃性の気体、液体などに触れる場所
- ・振動の多い場所、本製品が静止できない場所
- ・基板のショートを引き起こす可能性のある場所

- 本製品は UL CSA 規格、CCC 認証など取得しておりません。 装置に組み込む場合は各安全規格への適合性をユーザー様で ご確認いただき、対応して頂きますようお願いします。
- WiFiモジュールの工事設計認証(技適)番号は 2.2 に記載してあります。

製品保証と修理

- ・本製品の保証は商品到着後10日以内の初期不良のみ無償交換 とさせていただきます。 本マニュアルに記載するテスト手順にて正しく動作しない場合は ただちに電源を切って、当社ホームページのサポートからご連絡
- ください。 折り返し交換手順をご案内いたします。
- ・保証期間中であってもユーザー様の責となる故障(落下や電源の 誤接続など)は有料修理になります。
- ・その他の故障やクレームにつきましても当社ホームページ
- http://www.cyber-melon.com お問い合わせコーナーよりご連絡ください。

動作チェック

- . 4章の手順にしたがって 接続テストを おこなってください。
- ・パソコンと接続する場合は本ボードの動作および動作チェックには以下の環境が 必要です。(本体のみでのご利用の場合、パソコンは必要ありません)

Windows パソコン

OS: WindowsXP 以上

USB の空きポート

もし動作異常が認められた場合は電源をはずして当社ホームページ http://www.cyber-melon.com のサポートから症状をご連絡ください。 対処方法をメールまたは電話でご連絡いたします。

2. 概要

XB-40は2.4GHz帯特定小電力無線により双方向でリレー接点無線中継のできる マイコン内蔵の制御ボードです。

単純に入力ピンの状態を別ボードのリレー接点に無線中継できる他、パソコンとUSB 接続すればパソコンから接点情報を無線送信してリレーを ON/OFF したり、ボードからの 接点情報をパソコンで遠隔受信することも可能な組み込み用途にも最適なボードです。

2.1 機能と特長

- ・電源を入れるだけで片方のボードの接点入力をもう一方のボードのリレーに 自動で無線中継。 無線の知識や面倒なペアリング操作も不要です。
- ・1:1の双方向通信が可能。 自分の入力を相手ボードのリレーに伝え、 相手ボードの入力状態を自分のリレーに反映します。
- ・さらにパソコンと接続すればパソコンから無線で遠隔ボードのリレーを ON/OFF したり遠隔の接点情報を読み込むことができます。(VB.NET の制御サンプルソース付属)
- ・ 停電などで電源が落ちても接点状態を自動的に相手に伝えて復旧します。
- RF(無線)モジュールは XBeePro(シリーズ1)を搭載し、電波は国内で使用の
 認められている 2.4MHz 帯で最大出力の 10mW、プロトコルは IEEE802.15.4 を
 用いています。
- ・最大到達距離は XBee モジュール・メーカーカタログでは屋外見通し直線で 750m、室内 60m。
- (注: 到達保証値ではありません。条件によって変わりますので目安とお考え ください)
- ・無線モジュールは TELEC 認証取得済みで電波法上の無線設備に対する使用許可 申請は不要です。
 - 1対マルチの通信はできませんが、異なる電波の周波数帯を割り当てることで 同時に複数のペアを動作させることも可能です。
- ・ボードは4つの接点入力(内部で抵抗プルアップ)と4個のリレー出力を持ちます。
 (3.1 ブロック図を参照)

ご注意)

- ・通信には最低2台のユニットが必要です。
- ・電源は付属しませんので必要に応じてお求めください。USB接続で使用する場合は電源は不要です。 また電池駆動の場合は専用の電池ボックスと単3電池をお求めください。

2.2 ハードウェア仕様

項目	仕 様		
電源電圧	DC5V		
	電池駆動の場合は単3電池4本(4.6V以上で動作)		
入出力	USB コネクタ(MiniB タイプ)		
	DIP スイッチ(4 極)2組		
	リセットスイッチ		
	4-bit 入力用コネクター(5ピン) *1)		
	リレー出力端子台(4組)		
	バッテリー電源用コネクター		
	Xbee-Pro 802.15.4		
使用 ZigBee モジュール	(Series1(Digi International Inc.)		
	工事設計認証(技適)番号:R201WW 08215111		
基板寸法	99.7(W) x 74.3(D)x 22.0(H) mm(アンテナを除く)		
是十개弗雪法	非通信時 220mA (全リレーが ON 時)		
取入仍其电弧	通信時 420mA (ピーク)		
取り付け	M3 x 10mm 長ナット (間隔 92.0 x 66.0)		

*1) 入力用コネクターの品番

日圧 B5B-XH-A(LF)(SN)

3. ハードウェア

3.1 ブロック図

XB-40 ブロックダイアグラム

3.2 外観·接続図

XB-40 の外観

XB-42RP の外観

接続図

ボード間 接点の無線中継(双方向も可能)

パソコンからの 遠隔無線リレー制御

パソコンで遠隔接点情報の取得

パソコンでローカルボードの入出力制御も可能

複数ペアでの同時運用も可能

3.3 各部名称と機能

16 接点入力コネクター

- リレー出力端子 リレーCH-1のメーク接点です。 リレーCH-2のメーク接点です。 ② リレー出力端子 ③ リレー出力端子 リレーCH-3のメーク接点です。 ④ リレー出力端子 リレーCH-4のメーク接点です。 ⑤ USB コネクター USB を接続します。 ⑥ DIP スイッチ2 ボードの ID を設定します。 エラーを表示します。 (7) LED-2 (8) LED-1 動作状態を表示します。 ⑨ DIP スイッチ1 無線の周波数を選択します。 IEEE802.15.4 無線モジュールです。 10 XBee Pro ① リセットボタン ボードをリセットします。 (12) LED-3 電波の強さを表示します。 13 電源ジャック 5V DC 電源(外部電源)を接続します。 (4) 電源選択ジャンパープラグ ボードの電源を USB にするか 5V 外部電源にするか バッテリー(外部電池)にするかを選択します。 15 バッテリー電源コネクター 外部電池ボックスを接続します。
 - スイッチなどの接点入力を接続します。

3.4 コネクター・ピン配置

PIN	機能	PIN	機能
1A	リレー1 Common	1B	リレー1 Make
2A	リレー2 Common	2B	リレー2 Make
3A	リレー3 Common	3B	リレー3 Make
4A	リレー4 Common	4 B	リレー4 Make

T1~T4 リレー出力端子台

CN-3 入力コネクタ

PIN	機能	PIN	機能
1	GND	2	CH-1 接点入力
3	CH-2 接点入力	4	CH-3 接点入力
5	CH-4 接点入力		

CN-2 バッテリー電源コネクタ

PIN	機能	PIN	機能
1	GND	2	(N. C.)
3	+5∼7. 5V		

3.5 電気的特性

以下にポート入出力(コネクタ CN1, CN2)の電気的特性を示します。

絶対最大定格

項目	値	条件
リレーの最大定格	AC125V、DC60V 1A	
接点入力(CN-3)インピーダンス	1 k Ω	

リレーの詳しい規格は添付 CD-ROM の Document フォルダーにあるデータシートを 参照してください。

入力回路は 3.7 を参照してください。

3.6 電源について

3.6.1 電源の選択

・XB-40 ボードの電源は ①USB ②オプションの外部5Vスイッチング電源
 ③外部バッテリー(電池ボックス)のいずれかから選択可能です。
 使用する電源に応じて電源ジャンパープラグを図に従って差し替えてください。

- ・外部スイッチング電源を用いる場合は別途お求めください。
- ・外部バッテリーを用いる場合は専用電池ボックスと単三電池を別途お求めください。 (電池は電池ボックスに付属しません)
- ・USB を電源に使用する場合は外部電源は必要ありませんが、500mA を供給できる 必要があります。

3.6.2 外部バッテリーでの駆動

外部バッテリーは別売の電池ボックスから供給します。 裏のビスをはずして矢印の方向にずらせて裏蓋を開け、単三電池を4本入れて ください。

コネクタを3ピンのバッテリー電源コネクター(3.3)に差し込んでからスイッチを 入れてください。

- ・電池ボックスは最大負荷のかかった状態で 4.6V 以上の電圧が必要です。 専用電池ケースを使用しない場合、DC7.5V を越えないようご注意ください。
- ・電池で連続運転可能な時間は1000mAh 程度の標準的な単三NiMH(ニッケル水素) 充電池の場合、最大負荷(全リレーが 0N =220mA)で約3時間、2500mAh では 約6~8時間です。(注:電池の内部抵抗などの性能によって違いがあります)
 ニッカド、ニッケル水素電池の場合電圧がフル充電でも最大負荷時の電圧が5V 程度になり、4.7V 未満では本機リレーが動作しないため電流だけの単純計算値 (容量 / 平均220mA)より短くなりますので、ご注意ください。
 接点入力専用(全リレーが 0FF 状態)では供給時間はこれの倍以上になります。

3.7 入出力回路

XB-40 には 4 つのスイッチなど接点入力を CN-3 コネクターから読み込むことが できます。

これらスイッチの接点状態(ON/OFF)は無線で相手ボードのリレーに伝えられます。 スイッチは GND (グラウンド)とショートさせることで'1'= リレーON 状態 に なります。

3.7.1 接点入力回路

以下の図に接点入力回路を示します。

図のように入力は 1kΩの抵抗で保護されて、内部 10kΩ抵抗でプルアップされて いますので外部にプルアップは不要です。

付属の接点入力ケーブルにスイッチなどを接続してお使いください。

21

3.7.2 リレー出力回路

リレー出力回路は下図のようにリレーのメーク接点が端子に出力されています。

<u>4. XB-40 の使い方</u>

4.1 DIP スイッチの設定

2つの DIP スイッチを設定します。 DIPSW-1 は**周波数の設定**を、 DIPSW-2 は **ボードの ID** を決めます。

ペアを組むふたつの ボードでは DIPSW-1 の設定(電波の周波数)は同じにしなければ なりません。

このモジュールでは設定できない周波数(DIPSW-1がすべて OFF など)もありますので 4.6の表にてご確認ください。

DIPSW-2 の方はペアを組むボードの片方だけ No. 1, 2, 3, 4 のうち No. 1 (一番左) を ON にして他方のボードは No. 1 を OFF にしてください。

(これでボードの識別をします。ボードの ID が両方同じだと通信ができません)

DIPSW-2 の他のビット(No.2,3) は USB で複数のボードを接続する場合など ボードの識別にお使いいただけます。(DIPSW-2 の読み込みコマンドがあります) ビット No.4 は ON にすると後述(4.4 エラー検出機能とリトライ)の定期通信 モードになります。

4.2 電源を入れる

電源の供給方法には3通りあります。 **3.6** に従って電源選択のジャンパープラグを 設定してください。

- ・外部 5V スイッチング電源(別売)の場合は電源プラグを電源ジャックに差し込み ます。
- ・USB を用いる場合はパソコンから USB ケーブルで ボードの USB コネクタに接続 します。
- ・**外部バッテリー**駆動の場合は電池ボックス(別売)に単3電池4本を入れて バッテリー電源コネクターに接続し、電池ボックスのスイッチを ON にします。

電源が入ると LED-1 と LED-2 の両方が1秒間に3回の速い点滅をして初期化中 であることを示します。

通常3秒程度で初期化が終わると LED-2 は消えて LED-1 のみ2秒に一回のゆっくり した点滅に変わります。(1秒 ON、1秒 OFF の繰り返し)

ペアを組んだ両方のボードの電源が入って初期化が終わると、お互いに通信をして 相手の現在の入力接点情報を自分のリレーに反映します。

4.3 通信のタイミング

以後、接点入力の状態が変化すれば相手のボードにそれを伝えます。 電波を出すのはこの瞬間だけですので、他の機器に与える影響も最小限になります。 電波を受信すると LED-3 が電波の強度に応じた明るさで光ります。 この LED-3 は電波の受信が一瞬であっても約1秒間光り続けます。

4.4 エラー検出機能とリトライ

本機では入力接点情報とエラー検出コードを同時に送ることで、受信側でデータエラー を検出した場合、 リレーは 0N/0FF されません。

そして受信側は送られてきたコードをそのまま送信側に送り返し、送信側でそれが 送ったデータと同じかどうか検証します。

もし送ったデータと返ってきたデータが違っているか、返信がなければ LED2 をエラー 点滅させて、0.5 秒ごとに最大 20 回までリトライ(再送信)をおこないます。 この間に通信が回復すればエラー点滅を止めますが、10秒経過しても通信できない 場合は初期状態に戻って待機します。

両方のボードで同時に接点入力が変化した場合は電波の混信でエラーする可能性が あります。

この場合、ボードの ID によって異なる時間をずらせて情報を再送します。

2回の再送には最悪 80msec がかかるので非常に速い速度で接点が変化した

場合(1秒に10回以上など) 途中の経過が抜けて、最終的な接点状態が届く こともあります。

スイッチの速い状態変化をカウントするようなアプリケーションでは、両方の ボードが同時に送信をおこなわない工夫が必要です。

また入力の状態が相手ボードのリレーに反映するまでは通常 20~30msec 程度の 時間遅延がかかります。

4.5 電源落ちからの復旧など

停電などで電源が落ちた場合も、次に電源が復旧したときに自動的に通信して 現在の接点状態を復元しますので、リセットや初期設定などの処理は必要ありません。

相手のボードが電源を切ったことを検出するには DIPSW-2 の No.4 を ON に

することで**定期通信モード**にします。

このモードでは相手から 10 秒間通信がこないと、こちらから通信を送って接続を 確認します。(KEEP ALIVE 機能)

応答がないか、エラーの場合、通常の通信と同様 10 秒間リトライを続け、それでも 応答がない場合、相手のボードが電源を切ったと判断し、自分のリレーをすべて OFF にします。

相手が電源を切ってからそれを検出するには最大 10 秒+10 秒=20 秒かかります。 DIPSW-2 の No.4が OFF で定期通信モードが OFF の場合は相手が電源を切っても 自分のリレーをオフにせず、最後の状態をそのまま維持します。

PC から相手側(リモート側)の電源が 0FF になったことを検出する方法に ついては **5.2** の RI コマンドの項を参照してください。

4.6 電波の周波数について

DIPSW-1 と電波の周波数の関係は下記の通りです。

DIPSW-1				設定可否	IEEE 802.15.4 チャ	
1	2	3	4	*1)	ンネル	□次致(₩□2)
OFF	OFF	OFF	OFF	Х	CH-11	2405
ON	OFF	OFF	OFF	0	CH-12	2410
OFF	ON	OFF	OFF	0	CH-13	2415
ON	ON	OFF	OFF	0	CH-14	2420
OFF	OFF	ON	OFF	0	CH-15	2425
ON	OFF	ON	OFF	0	CH-16	2430
OFF	ON	ON	OFF	0	CH-17	2435
ON	ON	ON	OFF	0	CH-18	2440
OFF	OFF	OFF	ON	0	CH-19	2445
ON	OFF	OFF	ON	0	CH-20	2450
OFF	ON	OFF	ON	0	CH-21	2455
ON	ON	OFF	ON	0	CH-22	2460
OFF	OFF	ON	ON	0	CH-23	2465
ON	OFF	ON	ON	Х	CH-24	2470
OFF	ON	ON	ON	Х	CH-25	2475
ON	ON	ON	ON	Х	CH-26	2480

*1) X印の付いたチャンネル(11,24,25,26)は XBeePro シリーズ (本機標準) では 設定できません。

動作不良が頻繁に起きる場合、設定した電波の周波数が近くで別の機器によって 使われている可能性があります。

ペアを組む片方のボードの電源を落としても LED-3 (電界強度 LED)が頻繁に点灯 するようでしたら、その周波数が使われている可能性がありますので DIPSW-1 で 周波数の設定を変えてみてください。

この場合、ペアを組むボードの双方を同じ周波数に設定する必要があります。 周波数を変更した場合は電源を入れ直すか、リセットボタンを押して新しい 設定を反映してください。

4.7 電波の強度と混信などについて

4.7.1 アンテナを立てる

本機を出荷時には梱包の関係でワイヤーアンテナは折りたたんであります。 アンテナを立てる場合は根元と先端をつかんで、なるべく力をかけずに ゆっくりと 伸ばしてください。 急激な力は破損の原因となります。

4.7.2 ケースに入れる

本機をケースなどに入れて使う場合、アンテナを含む XBee モジュールの先端 10mm 程度は金属が被らないようにしてください。

4.7.3 無線 LAN の影響

XBee(IEEE802.15.4)の2.4GHz 周波数帯は 無線 LAN (IEEE802.11b/g/n)と使用する 周波数チャンネルによっては周波数が互いに被ります。

共に送信制御に CSMA/CA 方式(電波が発信されていない間隙を見つけて、ランダムな 一定時間後に送信する方法)で衝突回避しますので、エラーになる確率は低くなり ある程度は共存できますが、どちらかが長い時間同じ周波数を占有しようとすると 通信に抜けが生じる可能性もあります。

予め衝突する周波数がわかっている場合は 4.6 の周波数表から衝突を回避する周波数 を選択してご利用ください。

尚、本機は入力スイッチなど接点状態に変化があった瞬間だけ電波を送信しますので 通常は占有率は低いです。

4.7.4 低出力モジュール

XB-40 に標準搭載の XBee Pro S1 モジュールは国内で許可される最大出力(10mW) ですが、パワーレベルを変更できません。

XBee の出力は強ければ強いだけ周辺に与える影響も大きくなってしまいますので、 近距離だけでの使用など場合によっては弱い出力のモジュールが好ましい場合が あります。

1mW の XBee に置き換えご希望の場合はご購入前に末尾の URL からお問い合わせ ください。

5. パソコンからの制御

5.1 ドライバーのインストール

XB-40 をパソコンで動作させるためにはパソコンに本ボード用のUSBドライバーを インストールする必要があります。 以下にその手順を説明します。 パソコンの OS が WindowsXP の場合は 4.1.1、 Vista の場合は 4.1.2、WIndows7 の 場合は 4.1.3 を参照してください。

尚、ドライバーはUSBPI0-24 と共通ですので"USBPI0-24"の表示になります。

5.1.1 WindowsXP の場合

PCとUSB ケーブルを接続し、XB-40 の電源を入れます。

下記のダイアログが表示されますので赤丸の項目を選択して「次へ」をクリックします。

「一覧または特定の場所からインストールする」を選択して「次へ」をクリックします。

付属の CD-ROM を挿入し、赤丸の項目を選択して「次へ」をクリックします。

新しいハードウェアの検出ウィザード
検索とインストールのオブションを選んでください。
○ 次の場所で最適のドライバを検索する⑤ 下のチェックボックスを使って、リムーバブルメディアやローカル パスから検索できます。検索された最適のドラ イバがインストールされます。
 マリムーバブル メディア (フロッピー、CD-ROM など)を検索(M) □ 次の場所を含める(2): D¥Driver ● 参照(B)
○ 検索しないで、インストールするドライバを選択する(型) 一覧からドライバを選択するには、このオブションを選びます。選択されたドライバは、ハードウェアに最適のもの とは限りません。
〈戻る個〉 次へ(10) > キャンセル

自動的にインストールが始まります。もし始まらない場合は「次の場所を含める」 にチェックを入れて CD-ROM の "Driver32"フォルダー(32bit OS の場合)または "Driver64"フォルダー(64bit OS の場合)を「参照」ボタンで選択します。

新しいハードウェブ	アの検出ウィザード				
<u>ソフトウェアを</u>	インストールしています。ま	う待ちください			
H B	USBPIO-24 Driver				
) mchpusb.sys コピー先: C.¥WIND	⊘ IOWS¥System3	2¥Drivers	3	
			く戻る(B)	次へ(<u>N</u>) >	キャンセル

USB ドライバーのインストールが完了しました。

■ 正常にインストールできていることを確認します。

スタートメニューからコントロールパネルを開き、

システム → ハードウェア タブ→デバイスマネージャ を開きます。

XB-40 を接続した状態で上のように **IO Drivers** の項目に "USBPIO-24 Driver" が表示されていれば正しくボードが認識されています。

5.1.2 Windows Vista の場合

PCとUSB ケーブルを接続し、XB-40 の電源を入れます。

下記のダイアログが表示されますので赤丸の項目を選択します。

三新し	しいハードウェアが見つかりました		23
USBI	PIO-24のドライバ ソフトウェアをインストールする	る必要がありま	ŧţ
	ドライバ ソフトウェアを検索してインストール このデバイスのドライバ ソフトウェアをインストー ぬします。	します (推奨 -ルする手順を	!)(L) ご宴
+	後で再確認します(A) 次回デバイスをプラグ インするときまたはデバイン きに、再度確認メッセージが表示されます。	スにログオンで	すると
۲	このデバイスについて再確認は不要です(D) このデバイスは、ドライバ ソフトウェアをインスト 作しません。	~ールするまで	は動
		キャン1	

「オンラインで検索しません」を選択します。

下の画面が出たら付属の CD-ROM を挿入します。

下の警告が出たら「このドライバソフトウェアをインストールします」を選択します。

インストールが開始されます。

インストールが終了しました。

■ 正常にインストールできていることを確認します。

スタートメニューからコントロールパネルを開き、 システム → デバイスマネージャ を開きます。

XB-40 を接続した状態で上のように IO Drivers の項目に "USBPIO-24 Driver"
 が表示されていれば正しくボードが認識されています。
 (XB-40 USB ドライバーは USBPIO-24 と共通です)

5.1.3 Windows7 の場合

PCとUSB ケーブルを接続し、XB-40 の電源を入れます。 一旦このようなエラーが出ます。「閉じる」で終了します。

コントロールパネルから「デバイスとプリンターの表示」を選択します。

USBPI0-24 のアイコンを右クリックして「ハードウェア」タブの「プロパティー」 を開きます。 右下の「プロパティー」ボタンをクリックします。

USBP.	0-24	
ー デバイスの機能:		
名前	種類	
Jb USBPIO-24	ほかのデバイス	
デバイスの機能の 製造元:	概要 不明	
デバイスの機能の 製造元: 場所:	慨要 不明 Port_#0001.Hub_#0004	

「設定の変更」をクリックします。

SBPIO-2 全般	4のプロパティ ドライバー 詳細	×
1	USBPIO-24	
	デバイスの種類:	ほかのデバイス
	製造元:	不明
	場所:	Port_#0001.Hub_#0004
ちの デバ この さい	デバイスのドライバーがイ イス情報セットまたは要 デバイス用のドライバーす。 。	ンストールされていません。(コード 28) 素に選択されたドライバーがありません。 を検索するには、[ドライバーの更新]をクリックしてくだ
~		ドライバーの更新(U)
L	😚 設定の変更	2
		OK キャンセル

× 1

「ドライバーの更新」をクリックします。

5

USBPIO-24	
デバイスの種類	ほかのデバイス
製造元	不明
場所:	Port_#0001.Hub_#0004
デバイスの状態 このデバイスのドライバー	がインストールされていません。(コード 28)
デバイス情報セットまた(は要素に選択されたドライバーがありません。
このデバイス用のドライ/ さい。	ミーを検索するには、「ドライバーの更新」をクリックしてくだ
	ドライバーの更新(U)

「コンピュータを参照してドライバーソフトウェアを検索します」をクリック

● ■ ドライバー ソフトウェアの更新 - USBPIO-24	
どのような方法でドライバー ソフトウェアを検索しますか?	
→ ドライバー ソフトウェアの最新版を自動検索します(S) このデバイス用の最新のドライバー ソフトウェアをコンピューターとインター ネットから検索します。ただし、デバイスのインストール設定でこの機能を無効 にするよう設定した場合は、検索は行われません。	
→ コンピューターを参照してドライバー ソフトウェアを検索します(R) ドライバー ソフトウェアを手動で検索してインストールします。	
=+v>t	211

参照ボタンで Driver フォルダーを選択します。

64bit OS の場合は "Driver64" フォルダー、32bit OS の場合は"Driver32" フォルダーを CD-ROM から選択します。

	X
● 『ドライバー ソフトウェアの更新 - USBPIO-24	
コンピューター上のドライバー ソフトウェアを参照します。	
次の場所でドライバー ソフトウェアを検索します:	
○ サブフォルダーも検索する(I)	
→ コンピューター上のデバイスドライバーの一覧から選択します(L) この一覧には、デバイスと互換性があるインストールされたドライバー ソフトウェア と、デバイスと同じカテゴリにあるすべてのドライバー ソフトウェアが表示されます。	
次へ(N) キ ヤ	ンセル

「このドライバーソフトウェアをインストールします」をクリック。

 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
ドライバー ソフトウェアをインストールしています
Windows セキュリティ
ドライバー ソフトウェアの発行元を検証できません
→ このドライバー ソフトウェアをインストールしない(N) お使いのデバイス用の、更新されたドライバー ソフトウェアが存在するか どうか製造元の Web サイトで確認してください。
このドライバー ソフトウェアをインストールします(I) 製造元の Web サイトまたはディスクから取得したドライバー ソフトウェ アのみインストールしてください。その他のソースから取得した署名のない ソフトウェアは、コンピューターに危害を及ぼしたり、情報を盗んだりする 可能性があります。
● 詳細の表示(D)

SZ I

完了画面が出たら「閉じる」をクリックします。

◯ ■ ドライバー ソフトウェアの更新 - USBPIO-24 Driver	
ドライバー ソフトウェアが正常に更新されました。	
このデバイスのドライバー ソフトウェアのインストールを終了しました:	
USBPIO-24 Driver	
	閉じる(C)

先ほど開いたデバイス画面で黄色い△マークが消えていることを確認します。

5.2 コマンド一覧

XB-40 は パソコンから USB 経由で簡単な文字列のコマンドを受け取って動作 させることができます。 14ページの接続図の通り、パソコンから遠隔ボートのリレーを無線で制御したり 遠隔ボードの接点状態を無線で取得することができます。 その他ローカルボード(USB の接続先)のリレー制御、接点状態の取得も可能です。

5.2.1 コマンドの形式

コマンドはすべて ASCII 文字列で<u>数値はすべてヘキサ(16進数)にて送ります</u>。 最初の2文字がコマンドで、そのあとに制御データが続きます。

コマンド、制御データの後にターミネータとして CR (キャリッジ・リターンコード = 0x0d)を付加してください。

XB-40 は CR を受け取った時点でコマンドを解析して実行します。

コマンド実行に成功すれば"OK"失敗すれば"NGxx"の文字列を返します。

(xx はエラー番号) 応答のターミネータも CR です。

ただし状態取得のコマンドを送った場合は送った2文字のコマンドのあとに取得データを ヘキサで追加した文字列を返します。

・USB で直接接続した方のボードをローカルボード

・無線で通信する相手側のボードをリモートボード

と呼びます。

コマンドは以下の種類があります。

■ <u>リモート・リレー制御コマンド</u> 形式: ROvv

リモートボードのリレーを ON/OFF します。

最初の2文字"RO" がコマンド、続く2文字で出力データを指定します。

注) "RO "の2文字目は「ゼロ」ではなく OUT の「オー」です。

vv 00~0F のヘキサ値をポートに設定します。

コマンド	ROvv		
機能	リモートボードのリレーに出力する		
引数	值	内容	
VV	000F	出力値	
応答		"OK": 成功、"NGxx": 失敗	
(古田)(6)	ROOA	リモートボードの Bit-1, 3 のリレーを ON に	
使用例	R007	リモートボードの Bit-0,1,2 のリレーを ON に	
備考	'1'のビットがリ	レーON、'0'のビットがリレーOFF になります。	

■ <u>リモート入力取得コマンド</u> 形式:RI

コマンド	RI		
機能	リモートボートの接点情報を取得する		
引数	值	内容	
(なし)			
亡俠	RIvv	vv は接点データ入力値(000F)	
心合	NGxx	通信エラーの場合 NGxx を返す *1)	
使用例	RI		
進老	'1'のビットが接	点 ON(GND にショート)、'0'のビットが接点 OFF(接	
而今	点オープン) にた	こります。	

*1) Ver 2.12 (2015 年 5 月リリース)から実装
 最後の通信状態がエラーである場合に NGxx を返します。

・リモート側の電源オフの検出について

PC からの操作で相手側(リモート側)の電源が落ちたことを検出する方法について 解説します。

XB-40(RP)では接点情報に変化があった時のみ、変化のあった側から通信が おこなわれます。

RI コマンドによって新たな無線通信は行われず、RI コマンドでは最新に取得した 接点情報を返します。

それ故リモート側で電源が落とされた場合など、それ以降に通信がなければ RI コマンドでエラーが返りませんので、注意が必要です。

(ただし定期通信モードでは一定時間ごとに通信がおこなわれるので、その時エラー が発生し、 それ以後は RI コマンドで NG07 を返します。)

リモートの電源断の検出は RO コマンドのタイムアウトでおこなってください。 推奨動作は RO コマンドをタイムアウト付きで実行し、タイムアウトが起きた場合 リトライを2~3回おこない、すべてタイムアウトすればリモート側の電源が OFF と判断してください。

R0 コマンドで正しくリレーが制御されても、電波状況などによりその後のハンド シェークでエラーする可能性があるため1回のタイムアウトで電源 OFF と判断 しないでください。

特に定期通信モードにおいては両方から出す電波が重なってエラーする可能性が 高くなります。 ■ <u>ローカル・リレー制御コマンド</u> 形式:L0vv

リモートボードのリレーを ON/OFF します。 最初の2文字"L0" がコマンド、続く2文字で 注) "L0 "の2文字目は「ゼロ」ではなく OUT の「オー」です。

vv 00~0F のヘキサ値をポートに設定します。

コマンド	LOvv		
機能	リモートボードのリレーに出力する		
引数	值 内容		
VV	000F	出力値	
応答		"OK": 成功、"NGxx": 失敗	
は田園	LOOA	ローカルボードの Bit-1, 3 のリレーを ON に	
使用例	L007	ローカルボードの Bit-0,1,2 のリレーを ON に	
備考	'1'のビットがリレーON、'0'のビットがリレーOFF になります。		

■ <u>ローカル入力取得コマンド</u> 形式:LI

コマンド	LI			
機能	ローカルボートの接点情報を取得する			
引数				
(なし)				
応答	LIvv	vv は接点データ入力値(000F)		
使用例	LI			
	'1'のビットが接点 ON(GND にショート)、'0'のビットが接点 OFF(接			
備考	点オープン) になります。			

■ <u>DIP スイッチ読み込みコマンド</u>形式: CH

DIP スイッチ DIPSW-2 の設定を読み込みます。 USB で複数ボードを接続する場合のボード識別などに利用することができます。 最初の2文字"CH" がコマンドです。

応答は ON のビット が 1、OFF のビット が 0 になります。 DIP スイッチ上の番号とビットの対応は

- 1 bit-0
- 2 bit-1
- 3 bit-2
- 4 bit-3

となります。

コマンド	СН			
機能	DIP スイッチ 2 の設定値を読み込みます。			
引数	値 内容			
応答	CHvv	vv が DIP スイッチ読み込み値(000F)		
使用例	СН			
備考				

■ 割り込み制御コマンド 形式:EIvv

コマンド	EIvv		
機能	DIP スイッチ 2 の設定値を読み込みます。		
引数	值 内容		
VV	0001 01:割り込み許可、00:割り込み禁止		
応答		"OK":成功、"NGxx":失敗	
使用例	EI01	割り込みを許可する	
備考			

イイトロ	VR		
機能	バージョン情報を取得する *2)		
引数	值	内容	
(なし)			
応答	VRv.vv	v.vv はバージョン(例) 2.12	
使用例	VR		
備考			

*2) Ver 2.12 (2015 年 5 月 リリース)から追加

5.2.2 エラーコード一覧

コマンドにエラーがあった場合 (モード設定で「応答なし」を設定いなければ) "NGxx" (xx は下記のエラー番号)を返します。

エラー名	エラー番号	内容	
NOERROR	00	エラーなし (成功)	
ERR_ILLEGAL_COMMAND	01	存在しないコマンド	
ERR_ILLEGAL_PORT	02	不正なポート番号指定	
ERR_ILLEGAL_VALUE	03	不正なパラメータ	
ERR_ILLEGAL_MODE	04	不正なモード指定	
ERR_ILLEGAL_FORMAT	05	不正なフォーマット	
ERR_TIMEOUT 07		通信タイムアウト	

5.3 サンプルプログラムの実行

・サンプルプログラムは付属 CD-ROM の"Sample Programs" フォルダーに以下の プロジェクトが入っています。

- ・プログラムの実行には.NET Framework 2.0 以上の環境が必要です。
 OS が Vista 以上の場合はそのままお使いいただけますが、Windows XP で
 .NET Framework がインストールされていない場合は 付属 CD-ROM の
 redist フォルダーにある vcredist_x86.exe を実行して Visual C++ 2005
 再頒布可能パッケージ (x86)を予めインストールしてください。
- ・CD-ROM の "Sample Programs" フォルダーをどこかハードディスクの適当な 場所にコピーしてお使いください。
- ・サンプルプログラムを改造する場合はコンパイルに VisualStudio 2005 以上の開発環境が必要です。
 本サンプルは古い開発環境でもコンパイルできるよう Visual Studio2005 で 作製されています。 それ以降の Visual Studio でプロジェクトを起動すると 変換するかを聞いてきますので、変換をおこなってください。
- ・64 ビット OS でコンパイルする場合はサンプルのようにビルドメニューの構成 マネージャで CPU の 種類を <u>〈AnyCPU〉ではなく〈x86〉で</u>コンパイルしてください。 ドライバー呼び出しに使っている mpusbapi.dll が 32 ビット構成のため 〈AnyCPU〉でコンパイルすると 64 ビットでコンパイルされる結果、DLL の呼び出し が正しくおこなわれません。

[•] XB-40TestVB

XB-40 を USB で制御する VB. NET (Visual Basic) のサンプルです。

5.3.1 XB-40_Test の実行

XB-40 ボードをパソコンと USB ケーブルで接続し、Sample Programs の下の bin フォルダーの XB-40_Test.exe を実行します。

XB-40 ボードの電源選択ジャンパーは 3.6 に従って USB のポジションに予め 設定しておいてください。 ローカル、リモート両方のボードの電源を入れます。 プログラムを立ち上げて [USB 接続] ボタンをクリックします。

🔛 XB-40 Test	USB 接続	
○ □ 一カル	C ሀቺካት	
© 1-51	O UE-F	
3 2	1 0	
אלאב ן		
応答 	終了	

接続に成功すると下図のようにボタンがイネーブルされます。 ローカルボードの接点入力で'1'のビットがオレンジに表示されます。

🖶 XB-40 Test		
	USB 接続	
● ローカル	○ リモート	
一出力 ————————————————————————————————————		
 ローカル 	🔿 ሀቺኑ	
32	1 0	
コマンド LO00		
応答		
ок	終了	

0~3 のボタンをクリックするとボタンの色がオレンジに変わり、それに対応する ローカルボードのリレーが ON します。

送ったコマンドの文字列とボードからの応答文字列が下図の赤丸の部分に表示されて います。

🛃 XB-40 Test	
	USB 接続
- 入力 ・ ローカル	C IJቺ~ŀ
	0 IJŦ~ŀ
LCCL 応答 IOK	終了

入力グループの[リモート] ラジオボタンをクリックするとリモートボードから 無線で送られてきたリモートボード側の接点情報が表示されます。 オレンジが'1' =接点 0N を示します。

🔜 XB-40 Test		
	USB 接続	
- 入力 - 〇 ローカル	(
出力 © ローカル	0 JE-F	
3 2	1 0	
עדב גרסב		
応答 OK	終了	

出力グループの[リモート] ラジオボタンをクリックして0~3のボタンをクリック するとリモートボード側の対応するリレーを ON にします。

5.3.2 USB の速度などについて

USB 自体の転送速度は Full Speed 対応で最大 12Mbps ということになっていますが、 コマンドを送ってからポートに反映されるまでの時間はパソコンのドライバーと プログラムの条件などによって異なりますのでユーザー様にてご確認願います。 必ず XB-40 からの応答を受け取ったあとで次のコマンドを発行するようにしてください。

5.4 サンプルプログラム解説

5.4.1 USB による XB-40 制御 (VB 版)

付属 CD-ROM の Sample Programs フォルダーの XB-40_TestVB は VisualStudio2005 VB(Visual Basic) で作成した USB による XB-40 制御サンプルです。 使い方は 4.3 に書いた通りです。 ここではプログラムの USB 制御コアについて 説明します。

プロジェクトの起動はXB-40_TestVB フォルダーのXB-40_Test.vbproj をダブル クリックしておこなえます。

このアプリではリレー制御用の 0~3 ボタンを押したときに制御コマンドをボードに 送る他、100msec ごとにタイマーでボードから接点情報を取得する構造になって います。

プログラムをわかりやすくするため、ボードヘリレー制御コマンドを出している間は タイマーでの状態取得は禁止しております。

次ページにPC側のプログラム階層図を示します。

アブリケーション

図のように USB制御のコアは MchUSB.vb の MchUSB クラスにカプセル化 されています。

アプリケーションからの USB 制御はこのクラスを使うことで mpusbapi.dll 経由で ドライバーを呼び出すことができます。

*) 64bit OS の場合、ドライバーは mchusb64.sys になります。

Form1.vb から MchUSB.vb の MchUSB クラスを呼び出して USB の入出力をおこないます。 以下は Form1.vb での主な制御関数です。

関数名	機能
GetReply	ボードから応答を受け取る
SendData	0~3 の各ボタンの状態をボードに送る
ButtonXXX_Click	各ボタンの応答関数(XXX はボタン名)

MchUSB. Write 関数によって USB ドライバーにコマンドが送られて USBPIO-8 ボードが これを受け取り I/O 制御がおこなわれます。

USB 制御のコアは MchUSB.vb ファイルに MchUSB クラスとしてカプセル化されて います。

このクラスはマイクロチップ社提供のDLL mcusbapi.dll を経由して USB ドライバー を呼び出します。 以下は MchUSB クラスの主な関数です。

MchUSB	ク	ラス	の概要
--------	---	----	-----

関数名	機能
Is0pen	指定のパイプがオープンされているか調べる
Open	入出力のパイプをオープンする
Close	入出力のパイプをクローズする
Write	出力パイプにデータを書き込む
ReadLine	入力パイプからデータを CR まで読み出す

USB の利用手順は

1. MchUSB クラスのインスタンスを作成する

サンプルプログラムでは Forml.vbの12行目あたりにある

usbpio = New MchUSB

で MchUSB クラスのインスタンスを定義しています。

- 2. Open 関数でパイプをオープンする。
- 3. ReadLine/Write 関数でパイプに対して読み書きをおこなう
- 4. 使用が終われば Close 関数でパイプを閉じる

となります。

以下は MchUSB クラスの関数仕様です。

MchUSB クラスの関数仕様

関数名	Open	
機能	パイプのオープン	
引数	タイプ 内容	
iDevice	Integer	複数のボードを扱う場合のデバイス番号(015)
戻り値	Boolean	true: 成功、false:失敗
備考		

関数名	Close	
機能	パイプのクローズ	
引数	タイプ 内容	
iDevice	Integer	複数のボードを扱う場合のデバイス番号(015)
戻り値	Boolean	true: 成功、false:失敗
備考		

関数名	Write	
機能	パイプへの書き込み	
引数	タイプ 内容	
iDevice	Integer	複数のボードを扱う場合のデバイス番号(07)
sCommand	String	USB に送るコマンド文字列
戻り値	Boolean	true: 成功、false:失敗
備考	USBPI0-8 側⊐	ニンドポイント(チップ内バッファ)のサイズは
	64 バイト	

関数名	ReadLine	
機能	パイプの読み出し	
引数	タイプ 内容	
iDevice	Integer	複数のボードを扱う場合のデバイス番号(015)
nTimeout	Integer	タイムアウト (msec)
戻り値	String	USB からの応答文字列
備考		

関数名	Is0pen	
機能	パイプのオープン状態を調べる	
引数	タイプ 内容	
iDevice	Integer	複数のボードを扱う場合のデバイス番号(015)
戻り値	Boolean	true: オープン、false:非オープン
備考		

5.4.2 おことわり

XB-40 および USB コア使用方法以外のアプリ全般のプログラミング技術や Visual Studio の使い方に関するお問い合わせはサポート外とさせていただきますのでご了承ください。 XB-40、または USB 部分についてのご不明な点は当社ホームページの「お問い合わせ」より ご質問ください。

5.5 mpusbapi.dll の関数一覧

DLL を直接コールする場合の関数一覧です。

使い方は 5.4.1 のサンプルソースを参照してください。

関数名	MPUSBGetDeviceCount	
機能	接続されているデバイスの数を返す	
引数	タイプ	内 容
pVID_PID	char*	ベンダーID, プロダクト ID "vid_04d8&pid_ff33"
戻り値	int	接続されているデバイスの数
備考		

関数名	MPUSBOpen	
機能	パイプのオープン	
引数	タイプ	内容
iDevice	int	デバイス ID
pVID_PID	char*	ベンダーID, プロダクト ID "vid_04d8&pid_ff33"
pEP	char*	エンドポイントの名前 "¥MCHP_EP1"
iDir	int	Write = 0 , Read = 1
iReserved	int	未使用
戻り値	int	パイプのハンドル
備考		

関数名	MPUSBRead	
機能	パイプのリード	
引数	タイプ	内 容
iHandle	int	パイプのハンドル
pData	char*	データバッファへのポインタ
iLen	int	データバッファ長
pLen	int*	読み込んだデータ長を返す変数へのポインタ
iTimeout	int	タイムアウト時間の指定(msec)
戻り値	int	1: 成功、0:失敗
備考		

関数名	MPUSBWrite	
機能	パイプのリード	
引数	タイプ	内容
iHandle	int	パイプのハンドル
pData	char*	データバッファへのポインタ
iLen	int	データバッファ長
pLen	int*	読み込んだデータ長を返す変数へのポインタ
iTimeout	int	タイムアウト時間の指定(msec)
戻り値	int	1: 成功、0:失敗
備考		

関数名	MPUSBC1ose	
機能	パイプのクローズ	
引数	タイプ	内 容
iPipe	int	パイプのハンドル
戻り値	int	1: 成功、0:失敗
備考		

6. その他

6.1 オプション製品

・外部 5V スイッチング電源

・外部バッテリー用電池ボックス
(3.6 参照)

6.2 特別仕様

PC からの制御を主体とする場合、リモート側の接点状態でローカル側のリレーが自動で変わって欲しくない場合などがあります。
 常に PC からのコマンドだけでリモート、ローカルのリレーを制御するバージョンを用意しております。

詳細は当社ホームページ <u>http://www.cyber-melon.com</u> お問い合わせコーナー よりご連絡ください。

本書の改訂版は当社ホームページの該当製品コーナーよりダウンロードしてください。

Cyber MELON 株式会社インターネット 〒665-0841 兵庫県宝塚市御殿山 2-25-39 <u>http://www.cyber-melon.com</u> e-mail: <u>info#cyber-melon.com</u> (# を @ に置き換えてください)